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Abstract

This paper presents a general solution for determining the stress singularity order in an anisotropic wedge. The order
depends on the wedge angle, boundary conditions and material properties. The characteristic equation, which governs
the eigenvalues, is established from the Lekhnitskii’s complex function method. A domain of one-quarter circle is
proposed in which the contours of singularity order are plotted for all fiber orientations and a certain wedge angle. The
numerical results agree well with the open literature for special cases. To reduce to strength of stress singularity at the
wedge corner, the fiber direction corresponding to minimum singularity order can be determined. © 2001 Elsevier
Science Ltd. All rights reserved.

Keywords: Stress singularity; Anisotropic wedge; Fiber orientation; Lekhnitskii’s formulation

1. Introduction

In an elastic solid with geometric and/or material discontinuities, the stress may be singular. The nature
of stress singularities for several wedge configurations has been studied in the past. By making use of the
Mellin transform, Tranter (1948) obtained a formal solution for the stress distribution in an infinite wedge
under fairly general conditions of surface loading. Williams (1952) used the Airy stress function and sepa-
ration of variable to study the single-material wedge under different boundary conditions. He found that
the stresses near the apex of an isotropic elastic wedge are proportional to 7*~! (0 < Re[4] < 1). The value
of 1 — 1 can be real or complex in general. The severity of strong singularity order may cause cracks ini-
tiation and propagation at the apex of the wedge. Bogy (1971) employed the Mellin transform to treat the
two-material wedge problem that are bonded together along a common wedge and subjected to surface
traction at the boundaries. Dempsey and Sinclair (1979) utilized the separation of variables on the Airy
stress function to derive conditions for stress singularities of the form (#*~'Inr) as » ~ 0. Many other re-
searchers have studied related or extended wedge problems (see Erdogan, 1965; Hein and Erdogan, 1971;
Theocaris, 1974; Chen and Nisitani, 1992, 1993; Koguchi et al., 1993; for example).
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Fig. 1. Geometry of a wedge structure.

All of the above-mentioned research works are applied to isotropic elastic materials. Since composite
materials have become widely used in engineering structure design, people now pay more attention to the
anisotropic wedge problems. Fiber reinforced composites are commonly considered and modeled as or-
thotropic materials. Investigation of the associated crack problems for anisotropic materials was started by
Sih et al. (1965).

When the composite reinforcing fibers lie in the x—y plane, the plane of elastic symmetry is normal to the
z-axis (Fig. 1). The inplane and antiplane stress fields of generalized plane deformation problem are de-
coupled. Bogy (1972) and Kuo and Bogy (1974a,b) employed a complex function representation of the
solution (Green and Zerna, 1954) in conjunction with a Mellin transform to analyze the inplane stress
singularities in anisotropic wedges. Ma and Hour (1989) used Mellin transform to study the same wedge
problem for antiplane stress singularities.

If the fibers of each layer lie in the y—z plane (e.g. Delale, 1984) or x—z plane (Lin and Hartmann, 1989),
the material becomes fully anisotropic in global coordinates. The inplane and antiplane stress fields are
coupled. The stress singularities for several special configurations of anisotropic materials have been dis-
cussed, such as at a free edge in laminated composites (Ting and Chou, 1981; Huang and Chen, 1994),
bonded anisotropic wedges (Delale, 1984; Lin and Hartmann, 1989), and anisotropic layered composites
with a crack normal to an interface (Ting and Hoang, 1984). Chen (1998) utilized Ting’s formulation (Ting,
1986) to study the stress singularities in anisotropic multi-material wedges and junctions. Pageau and
Biggers (1996) developed a finite element approach to analyze three-dimensional singular stress in prismatic
configurations of anisotropic multi-material wedges and junctions. Wang and Choi (1982) employed
Lekhnitskii’s formulation to obtain the solution for a free edge laminates under extension. Based on the
Stroh formulation (Stroh, 1962), Zwiers et al. (1982) found out the possible existence of logarithmic par-
ticular solutions for stress in free edge problems under uniform extension.

Based on the Lekhnitskii’s formulations, this paper presents a general homogeneous solution to deter-
mine the singularity orders at the anisotropic wedge corner for any fiber orientation. One-quarter circular
region with fiber orientation (&, 7) as the coordinates is used to plot the variation of all singularity orders as
contour lines in this region. The dependence of fiber orientation is easily seen from these plots and the fiber
orientations to minimize the severity of the singularity can be determined visually.

The presence of the ! type singularity in an eigenfunction does not assure us the existence of that
particular singularity. It does tell us that, if a stress singularity exists it is one of the forms in the eigen-
functions, assuming that the boundary conditions near » = 0 of the wedge are homogeneous (Ting, 1996).
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A logarithmic stress singularity may also occur when the boundary conditions near » = 0 of the wedge are
not homogeneous.

Although the presence of the logarithmic singularity may be sufficient to cause delamination at the free
edge of composite, the role of the possible 7! singularity should not be ignored. The »*~! singularity is
much stronger than the logarithmic singularity and, if present, can be primarily responsible for the onset of
delamination (Stolarski and Chiang, 1989). The results obtained in this approach are based on the con-
sideration of the »*~! type stress singularity only. The existence of logarithmic solutions should also be
checked.

2. Governing equations for an anisotropic wedge in the generalized plane strain state
2.1. General formulation

A single-material anisotropic wedge of uniform cross-section is shown in Fig. 1. The wedge angle is
20, (0 < a < ). The global coordinate Oxyz is defined such that x—y plane represents the geometrically
symmetric surface. The body possesses rectilinear anisotropy and the applied tractions do not vary along
the longitudinal z-direction. The dimension of the body in the z-direction is large enough to warrant the
assumption that the stresses and displacements are independent of the z-coordinate. Since the material is
anisotropic, the x—y plane is not a plane of symmetry. Therefore, despite the fact that the problem is two
dimensional, the x—y plane will not remain plane after deformation, and the stress states will be three-
dimensional. This type of deformation is referred to as “generalized plane strain” or ‘“‘generalized plane
deformation”. For this situation, Lekhnitskii has developed a formulation in terms of complex variables
¢,(z1), ¢,(z2) and ¢(z3) to express the stress components in the form

g, = 2Re[i ¢ (21) + 1505 (22) + 154303 (23)]

g, = 2Re[) (z1) + ¢5(22) + A35(23)]

Ty = —2Re[p; ¢} (z1) + tod)(22) + 13 43¢5(23)] (1)
Tyz = ZRe[:ulAld)ll(zl) + .“2/12(15/2(22) + ﬂ3¢g(23)]

1. = —2Re[A1 ¢ (21) + Aa5(22) + P3(23)]

where
=x+wy i=1273 (2)

and constants y; are the roots of the following characteristic equation:

L(w)b(p) = (u) =0 3)
with

L() = Bssi® = 2Busit + Pua
I3(1) = Bistt® — (Bra + Bse)1” + (Bas + Bas) 1t — Boa (4)
() = Bupt = 2Bt + (2P1a + Bos)it® — 2Pagtt + oo

In the above, f;; are the terms in the reduced elastic compliance matrix.



6892 C.-H. Chue, C.-1. Liu | International Journal of Solids and Structures 38 (2001) 6889-6906

For an anisotropic material, the stress—strain relations can be written as:

Ex ay app aiz aig ais de Oy
&y ap dx Ay Ay Axs dg oy
& | |aiz ax as Ay 4z dsg 0 (5)
ars A4 dy4 Q3q Aag Q45 Qge Tyz
Vxz ais  axs  azs Q45 Ass  dse Txz
Txy Aie dxe dzs Qa6 ds6 Qe Txy
where a;; (i,j =1,...,6) are the elastic constants. f§;; in Eq. (4) are related to a;; by
a;3d;s3 ..
ﬁij:aij_ a ) L] = 172747576' (6)
33

Lekhnitskii (1963) has shown that, for anisotropic materials, Eq. (3) cannot have real roots and that the
complex parameters y; occur in three pairs of complex conjugate numbers.
In the expressions of Eq. (1), the parameters A, A, and A; are defined as follows:

- _13(.“1) _ _13(ﬂ2) _ _13(.“3)
ST h) T Thw) T e )

Thus, the stress components of anisotropic elasticity problems under the generalized plane strain state are
reduced to the determination of three complex potentials ¢, (z1), ¢,(z2) and ¢5(z3) which satisfy the con-
ditions for traction and/or displacements along the boundaries.

2.2. Governing equations for free-edge anisotropic wedges
The cylindrical coordinates (r,0,z) are used for convenience to express the stress components on
boundaries. The transformation is as follows:
_ 2 2
Oy = N0, + m-a, — 2mnt,,
2 9
Tg = —mne, + mna, + (m° — n°)1,, (8)

T, = —NTy, + MTy,

where m = cos0 and n = sin0. Substituting Eq. (1) into Eq. (8), the stress components are given as:

o9 = 2Re[g19)(21) + 205 (22) + g34305(23)] (%)
Tor = 2Re[h1¢'1 (Zl) + h2¢/2(22) + h3A3¢g(Z3)] (9b)
2 = —2Relji A, (21) + ndady(z2) + jsdb(23)] (%)

with
&(0) = w42 + m’ + 2mny,
hi(0) = —mni +mn + (n* —m*)y, i=1,2,3 (10)
Ji(0) = np; + m.
The boundary surfaces (0 = +a) of the elastic body are stress-free, i.e.
09(0 = t0) = 19,(0 = £a) = 19.(0 = £ar) = 0. (11)

In order to obtain the local solution near the apex of the wedge, the three complex stress potentials ¢, (z;),
¢,(2z2) and ¢,(z3) are assumed as follows:



C.-H. Chue, C.-I. Liu | International Journal of Solids and Structures 38 (2001) 6889-6906 6893

$1(21) = iz} + arz}
$1(22) = bi1z5 + b5 (12)
h5(z3) = clzg1 + czzg

where a,, a», by, by, ¢; and ¢, are complex unknown constants. 4 is a complex eigenvalue to be determined.
The variable z;, defined by Eq. (2), can be written in cylindrical coordinates as:

z; = r(cosl + y;sin0) = r&,(0). (13)

Substituting Eqgs. (12) and (13) into the stress components of Egs. (9a)-(9c), the boundary conditions
(Eq. (11)) yield, for 0 = «

si@adi @) + 8 @ali (o G@ad (@) + @@hiE (@) + L@hE@) + )i (2)
+ @ had[) =0 (142)

=1

(@) & (=) + W’ + ()b & (@) + ha(@)h& () + hs(@) A& (@)
+ @ hesE =0 (14b)

) ManE (0) + o) Aarl () + ja(@) Aaby &7 (o) + (@) Mabala (@) + (el ()

N P ) (14c)
and, for 0 = —u
g(—0)a & (—2) + gi(—ad (—2) | +g(-)b& (<o) + L(—a)b&(—a)
+ g3(*06)/13015§_1(*<1) + g3(*0€)/130253(*°‘)i_1 =0 (14d)

A—1

h(~0)an & (~a) + (g (—a)  + ha(~a)bi & (~a) + ha(~2)br&y(~a)
+hy(~0) e & (~a) + (@) had (-2 =0 (14e)

A—1

Ji(=o) Ay & (=) + ji (=) Aard, (=) + jo(—a) Asb) &7 (—a) + jo(—0) Aabr&y(—a)
+ (e (~o) + H(Ded () =0. (14)

Egs. (14a)—(14f) are six linear homogeneous equations with unknowns a;, @, by, b, c; and ¢,. They can be
rewritten in the following matrix form

M(Z)v=0 (15)
where the vector v is

v={ay,a, b, bc1,c} . (16)
For non-trivial solutions of vector v, the determinant of the matrix M(A) must vanish, i.e.

det{M(1)} = 0. (17)

An explicit expression for the determinant as a function of the eigenvalues 4 is too complicated to be shown
here. Of all the infinite numbers of /, only a small number of eigenvalues are of interest. Eigenvalues with
0 < Re[/] < 1 result in stress singularities, i.e. infinitely large stresses at the apex of the wedge.
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2.3. Decoupled inplane and antiplane stress field

When the fibers lie in the x—y plane, the material constants a4, a;s, da, das, dzs, a3s, das and asq in Eq. (5)
vanish. Consequently, the constants i, fis, B, Pos, fas and Bss in Eq. (6) become zero. From Eq. (4),
I3(u) = 0. Substituting into Eq. (3), it gives

(i) =0 (18)

(k) = 0. (19)

The roots of Eq. (19), defined as u; and u,, correspond to the inplane field. Meanwhile, the roots of Eq.
(18), defined as y3, correspond to the antiplane field. From Eq. (7), the parameters A, A, and A; are zero.
Therefore, the matrix M(4) is reduced to the form:

a@&d @ a@aE | e@E (@ e@&E | 0
M@E@  m@E@ @& (@ @S 0 0
0 o 0 0 @& @& |,
T I ) Rt () o () S () Py () Y G o ey 0 0
h(—a)é ! (—a) /11(—0()51(—06)#1 hy(—a) &5 (—0) hz(—ot)éz(—oc)H 0 0 ‘
0 0 0 0 A& (~a) A&
(20)
After rearranging Eq. (20) can be decoupled into the following two equations:
a@E'  a@E@ e@E () @&
W& @) @G m@E() BOEE |, 1)
T G () B ) Y (e Y ) Py ()R ) P e
()& (~a) hD& () | h(-0& " (~0) h(-0)&(-a)
S R@EE | 22)
A=0)E (—a) ja(—a)E (=)

It is noted that the parameters and singularity orders in Eqgs. (21) and (22) are only associated with the
inplane and antiplane fields, respectively.

3. The definition of a quarter circular region

This paper is concerned with the orders of stress singularity for fiber reinforced composite materials with
an arbitrary fiber orientation. Consider a fiber OD of the composite material in space (Fig. 2). The com-
ponents of unit vector f directed along the fiber are all positive. Assume that the projection of f on the x—y
plane is p. The angle between f and p is £, while the angle between p and the positive x-axis is 7. Thus, the
coordinate pair (&, ) defines the fiber direction. Due to symmetry, only fiber vectors in the first quadrant
are considered for one-material wedge problems. The others can be ignored.

One-quarter circular region is proposed as shown in Fig. 3. All possible values of fiber direction (¢, #)
can be located in this region. The definition of (&, 5) is similar to the radial and tangential directions in polar
coordinate system. The units of ¢ and 5 are degrees, and their values are in the range 0° < ¢, < 90°. It is
clear that any point in the region corresponds to the projection of point D on the x—y plane. Three lines
bound the region. The curved line 0,0, (& = 0°) represents that the fibers that lie in the x—y plane and



C.-H. Chue, C.-I. Liu | International Journal of Solids and Structures 38 (2001) 6889-6906 6895

Fiber vector

VA

Fig. 2. The definition of the fiber orientation in space.

make an angle n with the positive x-axis. Lines 0,0, (1 = 0°) and 0,0, (1 = 90°) are the cases in which the
fibers lie in the x—z and y—z planes, respectively. The points O,, O, and O. correspond to the cases that the
fibers are parallel to the x-axis, y-axis and z-axis, respectively.

All curves plotted in the region are the contours of the stress singularity order 4 — 1. For example, the
contour in Fig. 3(a) denotes the variation of largest root |4, — 1| (0 < Re[4] < 1) as 2o = 270°. This case
will be discussed in the next section.

4. Results and discussion
4.1. An anisotropic wedge with arbitrary fiber orientation

A typical graphite—epoxy unidirectional composite material is considered in this study. The engineering
constants of this fiber-reinforced composite adopted are assumed as (Wang and Crossman, 1977):

EL =13790 GPa, Er=EFE; =14.48 GPa
GLT = GLZ = GTZ = 5.86 GPa (23)

VLT = Voz = V172 = 0.21

where E, G and v are the Young’s modulus, shear modulus and Possion’s ratio, respectively. The subscript L
refers to the fiber direction, and T lies in the x—y plane and is normal to the L-axis. Z is normal to the L-T
plane according to the right-hand rule. The direction of the L-axis is denoted as (&, #) defined in Section 3.
The material constants a;; (i,j = 1,...,6) in Eq. (5) correspond to the xyz coordinates and can be obtained
by coordinate transformation. Thus, the composite material which can be considered as orthotropic in the
(L,T,Z) coordinate system is fully anisotropic in the (x,y,z) coordinate system.

For wedge angle 2o = 270°, there are three eigenvalues in solving the eigen-equation |M(1)| = 0. Fig.
3(a)—(c) show the contours of singularity orders 4, — 1 (i =1,2,3).

As discussed in Section 2.3, the inplane and antiplane problems of any anisotropic wedge with fibers
which lie in the x—y plane (¢ = 0°) are decoupled. In Fig. 3, all singularity orders 1 — 1 on curve O,0,
(¢ = 0°) are related to results of Bogy (1972) and Ma (1989). Table 1 lists the values of (1 — 1) computed
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Fig. 3. Contours of stress singularity order (2o = 270°) (a) the first root 4; — 1; (b) the second root 4, — 1 and (c) the third root A; — 1.

Table 1
The stress singularity orders (1 — 1) for an orthotropic wedge (2o = 270°)
n=0° n = 30° n = 60° n = 90°
Present paper
—0.4213367308 —0.4182463223 —0.4769643917 —0.4882001112
—0.333333 —0.333333 —0.333333 —0.333333
—0.204754671 —0.2057103419
Bogy (1972)
—0.4213367308 —0.4182463223 —0.4769643917 —0.4882001112
—0.204754671 —0.2057103419

Ma (1989)
—0.333333 —0.333333 —0.333333 —0.333333
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from present paper, Bogy and Ma when 2o = 270°. In the present approach, the singularity orders cor-
responding to the inplane and antiplane problems can be obtained simultaneously (Fig. 3(a)-(c)). It is
observed that:

(a) As (&,57) = (0°,0°), point O, of Fig. 3(a) gives the inplane singularity order 4, — 1 = —0.4213367308
and point O, of Fig. 3(b) gives the antiplane singularity order 4, — 1 = —0.33333. The third order A; — 1 is
zero (point O, of Fig. 3(c)).

(b) As (&,17) = (0°,90°), point O, of Fig. 3(a) gives the inplane singularity order 4; — 1 = —0.4882001112
and point O, of Fig. 3(b) gives the antiplane singularity order A, — 1 = —0.33333. The third order
/3 — 1 =—0.2057103419 for the inplane case (point O, of Fig. 3(c)).

Same discussions can be made on points A (n = 30°) and B (yn = 60°) in Fig. 3. From Table 1, good
agreements with published results have been verified. It concludes that the results of Bogy and Ma are only
the special cases of present approach.

Minimum of |4; — 1] in Fig. 3 is generally desired to diminish the stress concentration near the tip. From
Fig. 3(a), the smallest |4, — 1| is 0.4175018 for & = 0° and n = 25.6°, i.e. at point C.

4.2. The singularity orders of a crack in an orthotropic material

Now consider the case with (£,7) = (0°,0°) and 2o = 360°, i.e. a crack exists in an orthotropic com-
posite. The singularity orders of the inplane and antiplane problems are all —0.5. The solution of for-
mulation in this approach breaks down as 2o = 360°. To make it possible to analyze a crack problem, the
wedge angle has to be modified slightly, e.g. 2o = 359.9998°. The computed orders of stress singularity are
—0.4999995 of triple roots. Two roots correspond to the inplane problem and the other is for the antiplane
problem. Fig. 4 shows the contours of the first root 4, — 1. They are very close to —0.5. This example
further validates the formulation.

Fig. 4. Contours of the first singularity order 4, — 1 for 2o = 359.9998°.
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4.3. A single-material wedge with isotropic material

For an isotropic material, the complex parameters y; defined in Eq. (3) are pair equal and Lekhnitskii’s
formulation is not valid. In order to make the analysis for an isotropic body possible, the following method
of perturbing the isotropic material properties £ and v has been proposed (Lin and Hartmann, 1989).

E‘L:E7 ET: (1+8)E, EZ: (1 —S)E, GTL:GTZ:GLZ:E/[2(1+V)};

VL = Vrz = Viz =V (24)

where ¢ is a small constant, say 10~ or 10~7. After this modification, the roots of Eq. (3) are distinct and the
present formulation still works.

Williams (1952) and Ma (1989) computed the stress singularity orders for an isotropic wedge under the
inplane and antiplane loading conditions, respectively. Fig. 5 shows the contours of singularity order
A1 — 1. The values of contours are close to —0.4555163 obtained by Williams. Table 2 shows the numerical
results as 2o = 200° and 270°. Accurate results are guaranteed if ¢ is small enough.

Fig. 5. Contours of singularity order 4, — 1 for isotropic material (2o = 270°).

Table 2
The stress singularity orders for an isotropic wedge

Wedge angle Inplane Antiplane Present paper

Williams (1952) Ma (1989) e=10"° =107
200 = 200° —0.1813041 —0.1 —0.1813038 —0.1813041
—0.09999978 —0.1
200 = 270° —0.4555163 —0.4555161 —0.4555163
—0.3333333 —0.333333 —0.3333333

—0.09147081 —0.09146986 —0.09147081
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4.4. The fiber orientation (&*,n*) corresponding to the minimum stress singularity order at different wedge
angle

If wedge shapes exist in composite structure, it is necessary to reduce the strength of stress singularity, i.e.
(A —1). The order depends on the wedge angle 2a, the fiber orientation (&,#), and the material constants.
This section studies all of these three factors. With this, the fiber orientation corresponding to the minimum
stress singularity order, which is denoted as (&, 1), can be found to reduce the stress concentration near
the tip.

4.4.1. The factors of wedge angle 20 and fiber orientation (& ,n*)

Since there is no stress singularity for 2o < 180°, the discussion on wedge angle is in the range
180° < 2a < 360°. Figs. 6-9 display the contours of the first singularity order 4, — 1 at different angles. For
all cases, the highest values of |4, — 1|, i.e. the strongest stress singularities, occur at point O,. It indicates
that the fiber orientation should not coincide with the y-axis. Moreover, the minimum of |1; — 1] are all on
the arc 0,0, (&" = 0°). Table 3 lists the minimum of |4; — 1| and the associated fiber angles n* at different

Table 3

The minimum of |1; — 1] (inplane), |4, — 1| (antiplane) and the associated fiber orientations (&, n*) at different wedge angles
200 Inplane Antiplane

& " b1 ¢ n b1

200° 0° 44.7° —0.1283047 0° 0°<n<90° —-0.1
250° 0° 35.2° —0.3592504 0° 0°<n<90° —0.28
270° 0° 25.6° —0.4175018 0° 0°<n<90° -0.3
300° 0° 0° —0.4659950 0° 0° <y <90° —-0.4
350° 0° 0° —0.4995973 0° 0°<n<90° —0.4857

Fig. 6. Contours of the first singularity order 4, — 1 for 2o = 200°.
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Fig. 7. Contours of the first singularity order 4; — 1 for 2o = 250°.

Oy 90

Fig. 8. Contours of the first singularity order 4, — 1 for 2o = 300°.

wedge angles. The second roots 4, — 1 on arc 0,0, (£ = 0°, 0° < 5 < 90°), corresponding to the antiplane
problem, are also shown in the table. Consider the case 20 = 270°. For coupled or decoupled stress field, the
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Fig. 10. The variations of the first singularity order 4; — 1 with wedge angle. The minimum singularity order associates with the
particular fiber orientation (&, 5*).

particular fiber orientation (&*,n*) corresponding to the minimum stress singularity order is & = 0° and
n* = 25.6°
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When ¢ = 0° and n = 0°, 45°, 90°, Fig. 10 plots the variations of dominant stress singularity order 4; — 1
with wedge angle 2« at 2° increment. The singularity orders for isotropic wedges are included in the figure.
Moreover, the values of smallest |4, — 1|, depend on g*, are also plotted for comparison.

4.4.2. The effects of material constants
The influence of material properties on the stress singularity is investigated in this section. Two factors,

Young’s modulus E; and shear modulus Gz, are considered separately.
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Fig. 11. Contours of the first singularity order 4, — 1 with various Ey for 2o = 270° (a) 2 Er; (b) 10 Er; (c) 0.5 Ey; (d) 0.1 Ey.
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(1) Young’s modulus Ey. The material constant Ep used in Fig. 3 is 137.9 GPa. Fig. 11 display the
contours of stress singularity orders 1; — 1 at various £} where 2o = 270°. Comparing with Fig. 3(a), it is
shown that the singularity orders decrease in the region (0° < ¢ < 90°, 0° < 5 < 45°) and increase in the
region (0° < ¢ < 90° 45° <5 <90°) when Ep is increased. It indicates that the minimum singularity
orders corresponding to the fiber orientation (£*,%*) become smaller if the fibers are made stiffer. If the
fibers lie along the x-axis (¢ = 0°,n = 0°), Fig. 12 shows the variations of the order 4, — 1 with wedge angle
when Ep is changed. For the purpose of reducing the stress singularities, the usage of composite materials
with stiffer fiber in structural design offers better results if the fiber orientation is properly selected. It is
worth noting that values 4, — 1 on 0,0, do not depend on E;.

(2) Shear modulus Grz. It has been discussed in previous section that curve O,O, in contour lines of the
second root 4, — 1 denotes the decoupled antiplane problems. Their magnitudes strongly depend on the
shear modulus Gtz. When 20 = 270°, Fig. 13 displays the contours 1, — 1 when Gtz is reduced to half.
Comparing with Fig. 3(b), 4, — 1 on curve 0,0, have been changed from —0.33333 to variable values,
depending on . For example, 7, — 1 is —0.3076258 at = 30°. Again, it is shown that the singularity orders
decrease in the region (0° < & < 90° 0° <y <45°) and increase in the region (0° < &< 90°, 45° <
n < 90°) when Grz is decreased. If the fibers lie along the x-axis (£ =0° u =0°), Fig. 14 shows the
variations of the orders 4, — 1 with wedge angle when Gtz is changed. The usage of composite materials
with lower Gtz offers better results to reduce stress singularities if the fiber orientation is selected in
0° < n < 45°. Fig. 15 displays the contours of orders 4; — 1 for 0.5Gyz. Comparing with Fig. 3(a), it shows
that values 4, — 1 on curve O,0, do not change when Gy is altered. Fig. 16 displays the minimum of
|21 — 1] and the associated fiber orientation 1* at different wedge angles.

5. Conclusions

A general solution for determining the stress singularity order in an anisotropic wedge has been pre-
sented. Based on the Lekhnitskii’s complex function method, the characteristic equation is formulated. The
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Fig. 12. Comparison of the first singularity orders 4; — 1 at different £, when ¢ = 0° and = 0°.



6904 C.-H. Chue, C.-1. Liu | International Journal of Solids and Structures 38 (2001) 6889-6906

Oy 90

15

30

60

75

90 [ 7/
Oz

Singularity Order A,—1

180 200 220 240 260 280 300 320 340 360
Wedge Angle 2a

Fig. 14. Comparison of the second singularity orders 4, — 1 at different Gtz when & = 0° and n = 0°.

contours of stress singularity order for arbitrary fiber orientation are plotted in a one-quarter circular
region. From this approach, the fiber orientation (&, #*) can be determined to reduce the stress singularity

at the wedge corner. Moreover, the numerical results for some simple cases agree well with the open lit-
erature.
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Fig. 15. Contours of the first singularity order 4; — 1 for 0.5Grz and 2o = 270°.
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Fig. 16. The minimum values of |4; — 1| and the associated fiber orientations (0°,#*) at different wedge angles.
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